
Offset-Symmetric Gaussians for Differential Privacy

Parastoo Sadeghi and Mehdi Korki

August 31, 2022

P. Sadeghi’s research is supported by the Future Fellowship Scheme, Australian Research Council.



Summary of contributions

A new “hybrid” differential privacy mechanism is proposed, which is
somewhat between Laplace and Gaussian mechanisms.

It is rooted in the Gaussian mechanism → analytical privacy performance
derivations.

It can have sub-Gaussian tail → desirable for reducing outliers or
post-processing bias.

At the same utility (measured by variance), it has better (ϵ, δ) and better
Rényi differential privacy performance than the Gaussian.

To achieve the same (ϵ, δ) differential privacy levels, it adds less noise to
query (measured by noise variance).



Reconstruction attacks

Facts

Between 50% to 80% of people in the US are uniquely identified by their
full DoB, ZIP code and sex.

Simple “anonymization” of datasets and publishing them or using them in
training algorithms is a privacy risk.

In mid 1990s, Latanya Sweeney managed to hack into “anonymized”
health records of the Governor of MA by linking it with publicly available
voter data.

Registered voter data includes name, 
sex, ZIP, DoB

Health records with name!

“Anonymized” health records included 
heath conditions, sex, ZIP, DoB

x



Reverse engineering aggregated/swapped datacells has become easy

Source: https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%
20Privacy%20for%20the%202020%20Census.pdf

https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf
https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf


Reconstructions attacks are possible

Facts

Reconstructed over 300 million records from the 2010 census publicly
released data

Used 4 commercial databases which included real people’s name, address,
age, sex

Linked reconstructed records with commercial databases including name,
address, age, sex, ethnicity and race

Comparing with confidential US census data could get all variables
(including race & ethnicity) right for 17% of the US population

Source: https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%
20Privacy%20for%20the%202020%20Census.pdf

https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf
https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf


Use of differential privacy in the 2020 US Census was announced in 2018

Source: https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%
20Privacy%20for%20the%202020%20Census.pdf

https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf
https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%20Privacy%20for%20the%202020%20Census.pdf


NY Times Article, Feb 2020

US Census in 2020

“Every person matters for federal funding.”

To preserve privacy: “Imaginary people will be added to some locations
and real people will be removed from others.”

“Minorities and rural areas at most risk.”

Source: https://www.nytimes.com/interactive/2020/02/06/opinion/
census-algorithm-privacy.html#commentsContainer

 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer
 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer


NY Times Article, Feb 2020

Outliers Matter

Y axis: true population count (log scale)

X axis: reported count relative to the true population count (log scale)

Source: https://www.nytimes.com/interactive/2020/02/06/opinion/
census-algorithm-privacy.html#commentsContainer

 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer
 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer


NY Times Article, Feb 2020

Source: https://www.nytimes.com/interactive/2020/02/06/opinion/
census-algorithm-privacy.html#commentsContainer

 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer
 https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.html#commentsContainer


ABS is also interested in the potential of DP in its release methodologies

Source: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/
SDC2019_S2_ABS_Bailie_D.pdf

http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_ABS_Bailie_D.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_ABS_Bailie_D.pdf


The crux of the problem

How to educate researchers, the public and politicians about such tradeoff?



Noise adding mechanism for counting queries

Basic notation

x is a database, counting query q(x) returns true count n:

M(x)︸ ︷︷ ︸
mechanism noisy output

= n︸︷︷︸
q(x) is true count

+ Y︸︷︷︸
noise

Data-independent noise added to the true count.

Pr(M(x) = i |n) = Pr(Y = i − n|n) =︸︷︷︸
independence

Pr(Y = i − n)



Differential privacy for counting queries

For every two neighbouring datasets x ∼ x ′ differing on the attribute
of one individual (e.g., smokes or does not smoke), the output of the
mechanism should be almost indistinguishable.

ϵ-DP:

e−ϵ ≤ Pr(M(x) = i)

Pr(M(x ′) = i)
=

Pr(M = i |n)
Pr(M = i |n + 1)

≤ eϵ,∀i , n.



(ϵ, δ)-differential privacy

Formal definition

A randomized mechanism is M : X n → Y (n elements in dataset).

If for all neighboring datasets x ∼ x ′ ∈ X n and all events E ⊂ Y, we have

P[M(x) ∈ E ] ≤ eεP[M(x ′) ∈ E ] + δ,

then we say M satisfies (ϵ, δ)-DP.

Pure differential privacy: (ϵ, 0)-DP.

Approximate differential privacy: (ϵ, δ)-DP, 0 < δ < 1.



Laplace mechanism

Basic notation

Assume two neighboring datasets x ∼ x ′ differing on one element.

Query function q is called; Laplace noise Y ← L(0, λ) is added to q.

q(x) = 0 ⇒ M(x) = 0 + Y .

q(x ′) = ∆ ⇒ M(x ′) = ∆+ Y .

y ∆

The worst-case ratio of the two probability density functions will determine
the differential privacy (DP) performance.

λ = ∆
ε
⇒ ε-DP.



Gaussian mechanism

Basic notation

M(x) = q(x) + Y , Y ← N (0, σ2
gauss).

y ∆

There is no finite ε for which the ratio of the two probability density
functions is bounded by eε ⇒ We need to use either (ε, δ)-DP or
Rényi DP frameworks. In other words:

E = {y :
f (y)

f (y −∆)
>eε}̸= ∅



Pros and cons of Laplace DP mechanism

eϵf (y −∆)f (y)

Pro: Can achieve pure differential privacy: (ϵ, 0)-DP:
The blue curve never goes below the black curve.

Easy-to-design: e.g., ε = 0.5, ∆ = 1, Laplace scale λ = ∆
ε
= 2.

Utility optimal in some scenarios.

Con: Heavy tail → outliers and bias→ challenges in post processing.



Pros and cons of Gaussian DP mechanism

-13.35

eϵf (y −∆)

f (y)

Pro: Sub-Gaussian tail → less outliers or bias after post-processing.

Con: Only approximate (ε, δ)-DP is possible → δ is a measure of
impossibility of pure ε-DP.

For ϵ = 0.5,∆ = 1 and σ2
gauss ≈ 27.7, values y < −13.35 contribute to

δ ≈ 3.2× 10−4 (figure not to scale).



Computation of δ

y∗ = −13.35

[f (x) − eϵ f (x − ∆)]+

Critical value of y , below which all values contribute to δ:

y∗ = ∆
2
− ϵσ2

gauss

∆
= 1

2
− 0.5∗27.7

1
= −13.35

δ is given by the area under the curve:

δ(ϵ) =

∫ y∗

−∞
(f (x)− eϵf (x −∆))dx ,

where f denotes the pdf of the Gaussian N (0, σ2
gauss).

Figure not to scale.



Motivations

Discrete Gaussian is used for the release of 2020 US Census.

One main reason for switching from Laplace to Gaussian was the “heavy
tail” problem of Laplace leading to outliers and bias during processing.

δ should be much smaller than 1/n, where n is the size of population.

Research Question: Can we keep light tail of Gaussian but improve on its
DP-variance tuple (joint) performance?

The answer is YES!
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Intuition behind the proposed distribution - 1

Definition and properties

f (y) =
1

S ′︸︷︷︸
normalization

e
− y2

2σ2︸ ︷︷ ︸
Gaussian

e
− |y|m

σ2︸ ︷︷ ︸
Laplace factor L(0, m

σ2 )

(1)

Point-wise product of a Gaussian pdf and a Laplace pdf.

Original idea: moderate or slow down the Gaussian decay to reduce δ
through factoring in a Laplace pdf.

Two parameters in pdf: σ2 and m (more DoF in privacy-utility tradeoff).

Can be interpreted in different ways as we will see next (including why it is
called Offset Symmetric Gaussian Tails (OSGT)).



Alternative Description of pdf: The Reason behind OSGT Naming - 1

Towards the OSGT pdf

Our original definition can be rewritten as:

f (y) =
1

S ′
e
− y2

2σ2−
|y|m
σ2

Expand |y| cases⇒

=


1
S′ e
− y2

2σ2 +
ym

σ2 , y ≤ 0,

1
S′ e
− y2

2σ2−
ym

σ2 , y > 0,

Multiply by 1 or by e
+ m2

2σ2 e
− m2

2σ2

⇒

=



e
+ m2

2σ2

S′ e
− (y−m)2

2σ2 , y ≤ 0,

e
+ m2

2σ2

S ′︸ ︷︷ ︸
New constant 1/S

e
− (y+m)2

2σ2 , y > 0,



Alternative Description of pdf: The Reason behind OSGT Naming - 2

OSGT pdf

f (y) =


1
S
e
− (y−m)2

2σ2 , y ≤ 0,

1
S
e
− (y+m)2

2σ2 , y > 0,

Normalization S =
√
2πσ22Q(m/σ) takes care of the area under the Gaussian tails.

Note the resulting distribution has zero mean.

−m m
The Gaussian Q-function:

Q(x) =
1√
2π

∫ ∞
x

e−t2/2dt



Sampling: rejecting the non-tail values of N (0, σ2)

Rejection, followed by a shift

This view will be useful in sampling from the Gaussian, rejecting values
between [−m,m), and shifting the acceptable tail values to obtain a
sample from the OSGT.

−m m

→ ←



Intuition behind the proposed distribution - 2

Approximation at small |y | ≈ scaled Laplace

f (y) =
1

S ′︸︷︷︸
normalization

e
− y2

2σ2︸ ︷︷ ︸
Gaussian

e
− |y|m

σ2︸ ︷︷ ︸
Laplace

=
1

S ′
e
− |y|(|y|+2m)

2σ2

≈ 1

S ′
e
− |y|(�Z|y|+2m)

2σ2 , |y | ≪ 2m

=
1

S ′
e
−m|y|

σ2 , |y | ≪ 2m.



The shape of the proposed pdf

All three distributions are compared at the same variance.

The “Laplace-like” behaviour of the new distribution at small |y | can be
observed.
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Figure: σ2 = 40,m = 3, but actual variance is V ≈ 27.7.



Variance of OSGT random variable

Variance of OSGT is smaller than its input parameter σ2

Let Y ← T (0,V (m, σ2)) be a zero-mean OSGT distributed random variable.
Its variance is given by

E[Y 2] = V (m, σ2) = σ2 +m2 −
mσ exp

(
− m2

2σ2

)
√
2πQ

(
m
σ

) < σ2. (2)
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Sub-Gaussian tail

Proposition

The OSGT distribution T (0,V (m, σ2)) is σ2-sub-Gaussian if

m

σ
≤ Q−1(0.25) ≈ 0.6745.

In this case, we have:

P
Y←T (0,V (m,σ2))

[Y ≥ y ]≤ exp

(
− y 2

2σ2

)
.



Computing δ for the OSGT mechanism - 1

-16.5

eϵf (y −∆)

f (y)

At ϵ = 0.5,∆ = 1, m = 3, and σ2 ≈ 40, values y < −16.5 contribute to
δ ≈ 6.8× 10−5.

The actual variance is V = 27.7.

Recall, for the same variance σ2
gauss = 27.7, same ϵ = 0.5 and ∆ = 1, the

Gaussian gives y < −13.35 and δ ≈ 3.2× 10−4.



Numerical evaluation of (ε, δ) for OSGT versus Gaussian

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10−15

10−10

10−5

1

ε

δ
Gaussian mechanism

OSGT mechanism

Figure: ∆ = 1, m = 3, σ2 = 40, V (m, σ2) = σ2
gauss ≈ 27.7.

The OSGT mechanism achieves (ε, δ) ≈ (0.94, 10−10).

The Gaussian mechanism achieves (ε, δ) ≈ (1.12, 10−10).



Numerical evaluation of (ε, δ) for OSGT versus Gaussian - 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10−15
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Gaussian mechanism σ2
g = 27.7047

OSGT mechanism m = 3 and σ2 = 40

Gaussian mechanism σ2
g = 14.1372

OSGT mechanism m = 2 and σ2 = 20

Figure: (ε, δ)-DP performance of OSGT and Gaussian mechanisms at the same
variance.

The OSGT mechanism achieves better (ε, δ) at the same variance.



Numerical evaluation of (ε, δ) for OSGT versus Gaussian - 3
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Figure: Variance performance of OSGT and Gaussian mechanisms at the same
(ε, δ)-DP level.

The OSGT mechanism needs smaller variance (adds less noise; proxy for
utility) at the same (ε, δ).



Computing δ for the OSGT Mechanism

y∗

[f (x) − eϵ f (x − ∆)]+

δ(ϵ) =
∫ y∗
−∞(f (x) − eϵ f (x − ∆))dx

Analytical formula for δ, single-variate OSGT mechanism (1/2 cases shown)

δT (ε) =
1

2Q
(
m
σ

)
Q

(
σε

∆
−

∆

2σ

)
−eεQ

(
σε

∆
+

∆

2σ

)
︸ ︷︷ ︸

decreasing function of σ

 , ε >
∆2

2σ2
+

∆m

σ2
.

Recall that for a fair utility comparison: σ2
gauss = V (m, σ2) < σ2.

Comparison with δ of the Gaussian mechanism

δN (ε) = Q

(
σgaussε

∆
−

∆

2σgauss

)
−eεQ

(
σgaussε

∆
+

∆

2σgauss

)
, ε ≥

∆2

2σ2
gauss

.



Computing δ for the OSGT Mechanism

y∗

[f (x) − eϵ f (x − ∆)]+

δ(ϵ) =
∫ y∗
−∞(f (x) − eϵ f (x − ∆))dx

Analytical formula for δ, single-variate OSGT mechanism (1/2 cases shown)

δT (ε) =
1

2Q
(
m
σ

)
Q

(
σε

∆
−

∆

2σ

)
−eεQ

(
σε

∆
+

∆

2σ

)
︸ ︷︷ ︸

decreasing function of σ

 , ε >
∆2

2σ2
+

∆m

σ2
.

Recall that for a fair utility comparison: σ2
gauss = V (m, σ2) < σ2.

Comparison with δ of the Gaussian mechanism

δN (ε) = Q

(
σgaussε

∆
−

∆

2σgauss

)
−eεQ

(
σgaussε

∆
+

∆

2σgauss

)
, ε ≥

∆2

2σ2
gauss

.



Multidimensional OSGT mechanism

Definition

The k-dimensional query function q : X n → Rk .

The OSGT mechanism is obtained as M(x) = q(x) + Y .

Each noise component Yi in Y = (Y1, · · · ,Yk) is drawn from an i.i.d.
scalar OSGT distribution T (0,V (m, σ2)), leading to:

f TM(x)(y) =
1

S ′k
exp

−∥y − q∥22
2σ2︸ ︷︷ ︸

k-dim Gaussian

−m ∥y − q∥1
σ2︸ ︷︷ ︸

k-dim Laplace

 .



Multidimensional OSGT mechanism
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Figure: Variance performance of OSGT and Gaussian mechanisms at the same (ε, δ)-.

The OSGT mechanism needs smaller variance (adds less noise; proxy for
utility) at the same better (ε, δ) for k-dimensional query.

However, the improvement seems to diminish for large k.

The method for computation of δ is numerical.



Rényi DP (RDP) of the OSGT mechanism

Single-letter RDP upper bound

The Rényi DP of the OSGT mechanism is upper bounded by

Dα(M(x)∥M(x ′))︸ ︷︷ ︸
Rényi DP

≤ α
∆2

2

2σ2
+ ζ, ζ =

k

α− 1
log

(
1− Q(m

σ
)

Q(m
σ
)

)
.

where Dα(M(x)∥M(x ′)) is the Rényi divergence of order α.

Gaussian achieves RDP as α
∆2

2

2σ2
gauss

>α
∆2

2

2σ2 .



Exact computation of Rényi divergence for OSGT mechanism - 1

Key equations

The Rényi Divergence for k-dimensional OSGT mechanism can be
analytically written as

Dα(M(x)∥M(x ′)) ≤ α∆2
2

2σ2
+

k

α− 1
log

(√
2πσ2

S
B

)
where:

B = Φ((−m + (α − 1)∆)/σ) + Φ((−m − α∆)/σ)+

eα(α−1)(4m∆+4m2)/2σ2
×

(
Φ

(
α∆−m(1−2α)

σ

)
−Φ

(
(α−1)∆−m(1−2α)

σ

))
.

x

Φ is the Gaussian cumulative distribution function (cdf):

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt = 1− Q(x).



Components of Rényi divergence for OSGT mechanism

Key equation

Dα(M(x)∥M(x ′)) ≤ α
∆2

2

2σ2︸ ︷︷ ︸
αρ

+
k

α− 1
log

(√
2πσ2

S
B

)
︸ ︷︷ ︸

ζ

We numerically evaluate the scale of ζ and αρ as a function of α.

Figure: k = 8,m = 15, σ2 = 630,∆ = 1,∆2
2 = k∆ = 8. It can be observed the effect of ζ in the

overall Rényi divergence is rather small.



Rényi DP → δ

Analytical computation of Rényi DP to get a bound on δ

Dα(M(x)∥M(x ′)) ≤ τ ⇒ δ(ε) =
exp((α− 1)(τ − ε))

α− 1

(
1−

1

α

)α

τ =
α∆2

2

2σ2
+

k

α− 1
log

(√
2πσ2

S
B

)
.

For more details and applications (such as composition and noise filtering),
please see our paper published in 2022 in IEEE Trans. Information Forensics
and Security (TIFS) with the same title.


